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Abstract

Payers increasingly use competitive tendering to reduce expenditures on patent-protected

pharmaceuticals. Using a duopoly model with horizontally differentiated drugs, we show that

tendering can harm patients and fail to reduce costs. When demand depends on physicians’

tolerance for treatment loss, tendering yields a mixed-strategy equilibrium: firms balance

bidding low to win the contract against bidding high to exploit residual demand. Compared

with decentralised competition, tendering worsens patient outcomes and increases expected

prices unless treatment-loss tolerance is suffi ciently high. Quality asymmetries and captive

segments further amplify these distortions, highlighting critical trade-offs in procurement

design.
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1 Introduction

Pharmaceutical expenditures are escalating. According to the IQVIA Institute (2024), global

pharmaceutical spending increased from USD 1.2 trillion in 2018 to USD 1.6 trillion in 2023– an

increase of more than 30 percent. Much of this growth is driven by the introduction of new

medicines that offer substantial therapeutic benefits but come with very high prices, creating

a sharp trade-off between access and cost containment for policymakers and payers operating

under constrained budgets.

To mitigate rising pharmaceutical costs, competitive tendering has become an increasingly

prominent procurement tool. A recent OECD study (Barrenho et al., 2023), surveying drug

procurement practices across multiple countries, reports that competitive tendering is not only

becoming more widespread but is also expanding from off-patent to on-patent markets.

In off-patent markets, tendering typically involves price competition among branded and

generic versions of the same molecule. In on-patent markets, however, tendering entails compe-

tition among branded drugs with similar but distinct substances that may differ in effi cacy and

side effects across patient groups. As a result, tendering in such markets can lead to treatment

losses when the winning drug is suboptimal for certain patients. For this reason, tendering sel-

dom takes the form of winner-takes-all (exclusive) contracts; instead, payers commonly adopt

preferred-provider contracts that constrain physicians’prescribing choices while still allowing

some degree of clinical discretion (Barrenho et al., 2023).

The present paper investigates how physicians’willingness to accept therapeutic loss affects

competitive tendering outcomes. We develop a theoretical model in which substitution willing-

ness is captured by a threshold representing the maximum acceptable loss in treatment benefits

tolerated by physicians when prescribing the preferred drug. This threshold reflects physicians’

tolerance for clinical suboptimality and may be influenced by payer policies– such as prescrib-

ing guidelines or administrative burdens associated with deviating from the preferred drug. In

the Danish procurement model for hospital drugs, for example, this threshold is treated as a

policy lever:1

‘As the treatment recommendations issued through the model are standard treatments

at all hospitals within a therapeutic area, individual patient treatment preferences

could be challenged to the extent that some patients might be better treated with a

1A similar procurement design exists in Norway; see, e.g., Dalen et al. (2021) for further discussion.
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medicine other than the one recommended. The intention is that 80% of treatments

follow standard recommendations. This aim is to accommodate some degree of in-

dividual freedom of choice by leaving clinicians a 20% choice to administer different

medicines than the standard recommendation and to maintain competition’(Chris-

tensen et al., 2022).

Using a duopoly model with horizontally differentiated therapies, we examine producers’

optimal pricing strategies when preferred-drug status is awarded to the lowest bidder and de-

mand for the preferred and non-preferred drug is shaped by physicians’willingness to accept

treatment losses. Based on this framework, we derive several insights for the procurement of

patent-protected medicines.

First, competitive tendering induces a mixed-strategy equilibrium in which producers bal-

ance two incentives: bidding low to win the tender and become the preferred therapy, and

bidding high to extract surplus from residual demand as the non-preferred alternative. The

tolerance threshold for treatment loss is central to this trade-off. A higher threshold induces

more aggressive bidding but also implies that more patients will receive a less suitable ther-

apy, thus reducing aggregate treatment benefits. This generates a clear trade-off for the payer

between cost containment and clinical outcomes. When the payer weighs treatment costs and

benefits equally, raising the threshold increases the overall surplus, giving the payer an incentive

to adopt policies that raise physicians’tolerance for prescribing the preferred drug.

Second, we show that competitive tendering may be counterproductive in reducing drug ex-

penditures when compared with what we dub decentralised competition, where physicians make

drug prescription decisions by weighing treatment benefits against costs, and thus partially in-

ternalise the payer’s cost concerns. Under tendering, by contrast, physicians’role is limited to

assessing whether the foregone treatment benefits of prescribing the preferred drug fall within

the clinically acceptable tolerance threshold. Relative to the decentralised competition bench-

mark, competitive tendering lowers expenditures only if the tolerance threshold is suffi ciently

high. In that case, demand for the preferred drug is large, producers compete aggressively, and

bids fall. But for suffi ciently low thresholds, producers find it more profitable to bid high and

rely on residual demand as the non-preferred provider. As a result, under competitive tendering

expected prices and expenditures are inversely related to the tolerance threshold.

We also show that the relative advantage of tendering depends on the magnitude of thera-

peutic benefits. Whereas equilibrium prices under decentralised competition depend on substi-
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tutability between therapies but not on the absolute level of therapeutic benefits, the equilibrium

bidding strategies in competitive tenders are tied to the expected therapeutic benefit of each

drug in such a way that expected prices under tendering increase with the benefits of the drugs.

Accordingly, the scope for cost savings through tendering is greater in drug classes with lower

therapeutic benefits.

Third, our results have direct policy implications. For a suffi ciently low tolerance threshold,

competitive tendering is never desirable for the payer: it reduces patient welfare and increases

expenditures. Decentralised competition is preferable in this case. On the other hand, when the

threshold is suffi ciently high, the payer may benefit from tendering provided that the expenditure

reductions outweigh the treatment losses. In such cases, policies– such as recommendations,

guidelines, or administrative requirements– that influence physicians’tolerance for treatment

losses can make competitive tendering a more effective procurement tool.

Finally, we extend the model in two directions. First, we introduce asymmetric drug quality,

where one therapy offers higher expected treatment benefits, which implies that the two compet-

ing drugs are both horizontally and vertically differentiated. The superior drug then adopts a

stochastically dominant mixed strategy and becomes less likely to win the tender. We show that

such asymmetry may strongly amplify cost increases under tendering relative to decentralised

competition, since the superior drug’s demand advantage allows it to sustain high bids even

when losing the tender. This extension thus produces another clear policy implication, namely

that competitive tendering is more likely to be counterproductive, yielding higher procurement

costs than decentralised competition, if the competing drugs are vertically differentiated.

Second, we examine the role of captive patients– those unlikely to switch therapies due to

clinical inertia or brand loyalty. Evidence from Norway’s TNFi market, for example, suggests

that some patients remain on higher-cost brands despite the existence of more competitive

alternatives (Brkic et al., 2023). We model this by allowing one drug to hold a loyal segment,

which might be caused by early entry. A larger captive base raises the lower bound of feasible

bids and increases the probability that the high-demand drug bids at the ceiling. Unlike the

case of vertical differentiation, we show that decentralised competition is more exposed to these

loyalty effects than competitive tendering, leading to weaker cost containment, although the

difference is relatively modest.

The rest of the paper is organised as follows. In Section 2 we relate our study to existing

literature. The basic assumptions of our model are presented in Section 3. Based on this
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model, we analyse the benchmark case of decentralised competition in Section 4. In Section

5 we develop the competitive tendering model and compares its equilibrium outcomes with

decentralised competition. In Section 6 we present the two extensions: (i) asymmetric treatment

effects and (ii) captive demand. Finally, Section 7 concludes the paper.

2 Related literature

Our paper relates to several strands of the literature on competition and procurement in phar-

maceutical markets. First, we contribute to the small but growing literature on competitive

tendering in procurement in healthcare markets. The closest study to ours is Cao et al. (2024),

who analyse competitive bidding in off-patent drug markets following a 2019 reform in China.

In their setting, manufacturers bid for pre-specified procurement quantities. They show that

generic drugs won most bids, leading to substantial price reductions. Average drug prices fell

by 47.4 percent, with government insurance expenditures declining by 19.8 percent. Cao et

al. also develop an equilibrium model to quantify the trade-off between price reductions and

distortions in drug choice, showing that competitive bidding increases welfare when branded

and bioequivalent generic drugs are valued equally.

While Cao et al. (2024) focus on competition for fixed quantities of homogeneous drugs, our

setting differs along two key dimensions. We study on-patent markets with branded, horizontally

differentiated drugs, and a procurement mechanism in which the winner is awarded preferred-

provider status rather than a quantity commitment. Demand is endogenous and depends on

physicians’tolerance for treatment losses, which plays a central role in shaping bidding incentives

and equilibrium outcomes.

Related evidence comes from studies of competitive bidding for durable medical equipment

(DME) in the United States. Ding et al. (2025) show that Medicare’s competitive bidding pro-

gram that replaced administrative (regulated) prices led to large spending reductions, driven

primarily by price declines. Ji (2025) studies the same reform and documents significant quantity

reductions linked to ineffi cient supply shortages, highlighting how auction design– particularly

weak supply commitments– can undermine welfare gains. These studies underscore the impor-

tance of procurement design in healthcare markets.

Competitive bidding has also been gradually implemented in European healthcare systems.

The OECD survey by Barrenho et al. (2023) documents increasing use of tendering beyond
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off-patent markets, including preferred-provider arrangements for patent-protected drugs. De-

carolis and Giorgiantonio (2015) provide a descriptive analysis of procurement of orthopedic

implants and related medical devices across European countries. Christensen et al. (2022)

analyse the Danish procurement model focusing on generic substitution, and Brkic et al. (2023)

examine the Norwegian tendering model applied to TNFi inhibitors provided to rheumatoid

arthritis patients.

Our paper also builds on the literature on competition in on-patent markets between branded

drugs that treat the same indication but differ in effi cacy and side effects because they are

based on distinct substances. A seminal contribution is Ellison et al. (1997), who provide em-

pirical evidence on substitution patterns across pharmaceuticals using U.S. data and document

substantial within-class competition among chemically distinct branded drugs. Their analysis

shows that demand responds not only to prices but also to therapeutic differences, providing a

foundation for modelling branded drugs as horizontally differentiated products.2 This literature

is complemented by empirical evidence from multiple jurisdictions showing that the entry of

therapeutic substitutes exerts downward pressure on drug prices (Kakani et al., 2022; Dickson

et al., 2023; Feng et al., 2024; Garthwaite, 2025; Maini et al., 2021).

Building on this work, we adopt a standard framework of horizontal differentiation in which

physicians trade off patient-specific treatment benefits against costs when choosing among

branded therapies. Our contribution is to examine the merits of adopting competitive tendering–

through the assignment of preferred-provider status– in such markets by comparing it with a

standard model of decentralised branded competition. We show that competition in the market

and competition for the market can yield markedly different outcomes, and that competitive

tendering may perform poorly in markets for differentiated, patent-protected drugs.

Finally, our paper relates to the auction theory literature; see Klemperer (1999) for a com-

prehensive review. We study a procurement auction in which the winner is awarded preferred-

provider status and demand is endogenous. This feature induces mixed bidding strategies, as

firms trade off bidding aggressively to win the tender against bidding high to extract rents from

residual demand. Relative to decentralised competition, we show that this auction format may

be counterproductive for cost containment and can reduce consumer welfare. Our results have

2Another key study is Crawford and Shum (2005), who develop a structural model of prescription drug demand
in which physicians learn over time about drug-specific match quality within a therapeutic class. Focusing on
anti-ulcer medications, they show that brand—brand competition among on-patent drugs is shaped by horizontal
differentiation and information frictions, leading to persistent demand heterogeneity across therapeutically similar
drugs.
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broader implications for the design of procurement auctions in healthcare and other markets

with differentiated products.

3 Model

Consider a unit mass of heterogeneous patients who suffer from a condition that requires drug

treatment. There are two patented and therapeutically substitutable drugs available, denoted

by 1 and 2. For a given patient, the therapeutic benefit of being treated with (one unit of) drug 1

is given by u1 (x) = v−τx, where v > 0 is the maximum therapeutic benefit of the drug and x is

randomly and independently drawn from a uniform distribution on [0, 1]. For the same patient,

the therapeutic benefit of instead being treated with drug 2 is given by u2(x) = v − τ (1− x),

which implies that the therapeutic benefits of the two drugs are negatively correlated across

the patient mass.3 We also assume that v > τ , which implies that every patient has a positive

treatment benefit from both drugs (i.e., each drug can treat all patients). Thus, the two drug

versions are horizontally differentiated, with the degree of therapeutic substitutability inversely

measured by the parameter τ > 0.4

We assume that all patients are covered by a health plan which fully covers the treatment

expenses for all drugs that are included in the plan. We adopt a simple inclusion criteria by

assuming that drug i will be included in the health plan as long as the price of the drug, denoted

by pi, is not higher than its expected treatment benefit, denoted by v, which then constitutes

an upper bound on the price that each drug producer is able to charge; i.e., drug i will be

included in the health plan as long as pi ≤ v. Since the expected value of x is 1/2, the expected

treatment benefit of each drug is given by

v := v − τ

2
. (1)

The two drugs are produced by different profit-maximsing pharmaceutical companies. We

also assume that drug production involves no fixed costs and a constant marginal cost that

is the same for both drugs. For simplicity, and without further loss of generality, we set the

marginal production cost to zero.

3Our main results are qualitatively similar if we instead assume that treatment effects are uncorrelated. This
alternative assumption is discussed towards the end of Section 5.

4A complementary interpretation of the parameter τ is that it measures the degree of patient heterogeneity
in therapeutic benefits. In the limit case of τ → 0, all patients derive the same therapeutic benefit regardless of
which drug they are treated with.
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The demand for the two drugs depends on physicians’prescription decisions. We assume

that these decisions are constrained by the policy of the health plan, and in the following we

will consider two different policy schemes. (i) As a benchmark for comparison, we consider what

we will refer to as decentralised competition, where, for each patient, the prescribing physician

chooses among the available drugs approved by the health plan by taking both the benefits

and the costs of each drug treatment into account. (ii) We then compare this with the case

of competitive tendering, where the health plan selects one of the drugs as the preferred drug

based on a competitive bidding process. The preferred drug will then be prescribed to every

patient as long as the loss in therapeutic benefit (of prescribing the preferred drug instead of

the best therapeutic alternative) is below some threshold level.

4 Benchmark: Decentralised competition

Suppose that drug prescription choices are made by physicians who weigh treatment benefits

against treatment costs. If the weight physicians place on drug treatment costs is given by

β ∈ (0, 1], a given patient will be prescribed drug 1 if

v − τx− βp1 > v − τ (1− x)− βp2, (2)

and will be prescribed drug 2 otherwise. We find it reasonable to assume that prescribing

physicians care at least as much about treatment benefits as they care about treatment costs,

and this is reflected in our assumption that the parameter β is weakly less than one.5 When

drug prescriptions are made according to the decision rule in (2), demand for drug i is given by

qi (pi, pj) =
1

2
+
β (pj − pi)

2τ
; i, j = 1, 2, i 6= j. (3)

Suppose that prices are set by the two producers in a non-cooperative simultaneous-move

game. Deriving the symmetric Nash equilibrium of such a game is straightforward and the

details of this derivation are thus now shown. The equilibrium drug price (equal for both

drugs) is given by

p∗ =


τ
β if β ≥ τ

v

v if β < τ
v

. (4)

5We can think of the limit case of β → 1 as prescribing physicians acting as perfect agents for a health plan
that maximises total treatment benefits net of total treatment costs.
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As is evident from (4), the scope for decentralised competition to reduce drug prices below the

maximum level v depends on two factors: (i) the degree of therapeutic substitutability (inversely

measured by τ) and (ii) the price sensitivity of the prescribing physician (measured by β). All

else equal, a higher degree of therapeutic substitutability and/or more price-sensitive physicians

will lead to lower equilibrium drug prices.

In the symmetric equilibrium, each drug has a demand of one half, and the aggregate

treatment benefits are given by

H∗ = 2

∫ 1
2

0
(v − τx) dx = v − τ

4
. (5)

Notice that therapeutic mismatch costs are minimised in the symmetric equilibrium under

decentralised competition, since prescription decisions are not distorted by drug prices (which

are equal for both drugs). The equilibrium allocation of drug treatments is thus effi cient.

With a unit mass of patients, total treatment costs are given by the average drug price,

which in a symmetric equilibrium is given by (4). In the Nash equilibrium under decentralised

competition, the surplus of a health plan that maximises total treatment benefits net of total

treatment costs is therefore given by

S∗ = H∗ − p∗ =

 v − (4+β)τ
4β if β ≥ τ

v

τ
4 if β < τ

v

. (6)

5 Competitive tendering

Suppose instead that the health plan designs a tender, in which the two producers simultaneously

and non-cooperatively submit price bids, with the purpose of selecting a preferred drug among

the two. These bids must satisfy the inclusion criterion pi ≤ v, and drug i becomes the preferred

drug if pi < pj . In this case, physicians are required to prescribe drug i as long as the lost

treatment benefit (of prescribing the preferred drug instead of the therapeutic alternative) does

not exceed a threshold given by T > 0. In case of a tie, pi = pj , physicians can choose drug

treatments without any restrictions to maximise the patients’treatment benefits. We can think

of the threshold T as reflecting individual physicians’tolerance for prescribing a therapeutically

suboptimal drug treatment, which might, at least partly, be influenced by the health plan in the

form of guidelines or imposed bureaucratic costs associated with prescription of another drug
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than the offi cially preferred one.

Notice the differences in the role assigned to prescribing physicians in the two policy schemes.

Under decentralised competition, the health plan’s concern for cost containment is delegated to

the prescribing physician, whose role is to weigh treatment benefits against treatment costs when

choosing which drug to prescribe to each patient. Under competitive tendering, in contrast, the

role of prescribing physicians is restricted to making a purely clinical assessment about whether

or not to prescribe the preferred drug; i.e., to assess whether any foregone treatment benefit of

prescribing the preferred drug is below what is deemed clinically acceptable (as measured by T

in our model).

5.1 Drug demand

Suppose that drug 1 is the preferred drug. For a given patient, the net treatment gain of being

treated with this drug instead of the therapeutic alternative (drug 2) is given by

∆u (x) := v − τx− (v − τ (1− x)) = (1− 2x) τ . (7)

All patients for which ∆u (x) ≥ −T will be prescribed the preferred drug, while the remaining

patients will be prescribed the therapeutic alternative. Drug demand is then given by

qi =
1

2
+
T

2τ
and qj =

1

2
− T

2τ
if pi < pj , (8)

and

qi = qj =
1

2
if pi = pj . (9)

Thus, as long as T > 0, the preferred drug has higher demand than the therapeutic alternative.

However, as long as T < τ , the preferred drug does not have all demand. For the remainder of

the analysis, we therefore restrict attention to the more interesting (and arguably more relevant)

case of T ∈ (0, τ).

5.2 Nash equilibrium

Which bids will the two producers submit? In order to answer this question, we start out by

establishing a negative result:
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Lemma 1 If T ∈ (0, τ), the competitive tender does not have a Nash equilibrium in pure

strategies.

A strictly positive treatment loss threshold T implies that each producer can obtain a

discrete increase in demand by reducing its bid from slightly above to slightly below the bid of

the competing producer, which yields an incentive for price undercutting. On the other hand,

T < τ also implies that each producer obtains positive demand even if it submits the highest

possible bid, which implies that a bid equal to v is the best response to a bid suffi ciently close

to marginal cost by the competing producer. Thus, no equilibrium in pure strategies exists.6

The competitive tender has instead a Nash equilibrium in mixed strategies, which is char-

acterised as follows:7

Proposition 1 If T ∈ (0, τ), the competitive tender has a mixed-strategy Nash equilibrium in

which each drug producer submits a bid that is a random draw from a cumulative distribution

function given by

F (p) =
1

2

(
1 +

τ

T

)(
1− pmin

p

)
, (10)

with support
[
pmin, v

]
, where

pmin :=

(
τ − T
τ + T

)
v. (11)

The equilibrium strategies reflect the trade-off between the demand gain of winning the

tender and the profit margin gain of selling a non-preferred drug at the maximum price v. If

T is close to zero, the demand gain of being the preferred drug is small, and the equilibrium

strategy of each producer is therefore to randomise on a narrow interval of prices close to the

upper bound v. In the limit case of T → 0, the demand gain of winning the tender converges

to zero. Consequently, pmin → v and the Nash equilibrium converges monotonically to an

equilibrium in pure strategies in which both producers bid the maximum price v.

Conversely, a larger value of T increases the demand gain of being the preferred drug, which

in turn reduces the lower bound pmin and simultaneously makes F (p) more negatively skewed.

If T is close to τ , there is a huge gain of winning the tender, so both producers randomise with

most of the probability mass on prices close to marginal cost. In the limit case of T → τ , the

demand for the non-preferred drug converges to zero and F (p) converges to one. Consequently,

6See Appendix A for a more rigorous proof.
7See Appendix A for a formal proof of this and all subsequent Propositions.
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the Nash equilibrium converges monotonically to an equilibrium in pure strategies in which

both producers bid a price equal to marginal cost.

What are the expected drug purchasing costs of the health plan when drug prices are deter-

mined by competitive tendering? Let peL and p
e
H denote the expected values of, respectively, the

lowest and the highest bid in the tender. Taking into account that the demand for the preferred

and non-preferred drugs are given by (8), expected drug expenditures will be given by what we

term the expected average drug price, which is defined as

pe := peL

(
1

2
+
T

2τ

)
+ peH

(
1

2
− T

2τ

)
. (12)

Based on the equilibrium pricing strategies presented in Proposition 1, the next proposition

characterises the expected costs and benefits for the health plan under competitive tendering:

Proposition 2 If T ∈ (0, τ), the expected average drug price, and thus the expected treatment

costs, is given by

pe =

(
1− T

τ

)
v, (13)

and the aggregate treatment benefits are given by

H = v − τ

4
− T 2

4τ
. (14)

The expected average drug price is monotonically decreasing in T and ranges from the

maximum price v for T → 0 to zero (marginal cost) for T → τ . The intuition for this follows

directly from the above discussion of the equilibrium mixed strategies.

The aggregate treatment benefits are also monotonically decreasing in T , which is entirely

intuitive. The larger the loss in treatment benefits that is tolerated for the preferred drug, the

larger is the share of patients that are given a therapeutically suboptimal treatment. Thus, a

higher treatment loss threshold T reduces the expected treatment costs at the expense of lower

aggregate treatment benefits. However, it turns out that the former effect dominates the latter,

which allows us to summarise the implications of Proposition 2 as follows:

Corollary 1 As long as T ∈ (0, τ), an increase in the treatment loss threshold T leads to lower

expected treatment costs, lower aggregate treatment benefits, and a higher expected surplus for a

health plan that places equal weights on treatment costs and benefits.
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5.3 Competitive tenders vs. decentralised competition

How do the two policy schemes– competitive tenders and decentralised competition– compare

in terms of expected treatment costs and benefits? The next proposition provides a complete

characterisation of this comparison.

Proposition 3 Compared with decentralised competition, competitive tenders yield (i) lower

aggregate treatment benefits for all T ∈ (0, τ), (ii) higher (lower) expected treatment costs if

T < (>) T̂ ∈ (0, τ), and (iii) lower (higher) surplus for a health plan that gives equal weight to

treatment costs and benefits if T < (>) T̃ ∈
(
T̂ , τ

)
.

Under decentralised competition, aggregate treatment benefits are maximised in any sym-

metric equilibrium. This is not the case under competitive tendering, as long as the treatment

loss threshold T is strictly positive, which implies that some patients are being prescribed the

preferred drug even if the therapeutic alternative would yield larger treatment benefits. Thus,

competitive tendering always yields lower aggregate treatment benefits than decentralised com-

petition. Total treatment costs, on the other hand, might be higher or lower under competitive

tendering, depending on the value of T . More specifically, competitive tendering yields higher

(lower) expected treatment costs than decentralised competition if T is below (above) a thresh-

old value T̂ ∈ (0, τ), and the intuition for this follows directly from the previous intuition given

for the results in Propositions 1 and 2.

Comparing benefits and costs, it follows from Proposition 3 that competitive tendering

yields both lower treatment benefits and higher expected treatment costs than decentralised

competition if T < T̂ . On the other hand, if T > T̂ , the choice between these two policy

schemes involves a trade-off, since both benefits and expected costs in this case are lower under

competitive tendering. For intermediate values of T , given by T ∈
(
T̂ , T̃

)
, the trade-off goes in

favour of decentralised competition, which yields treatment benefits that more then outweigh

the higher treatment costs. However, if T is suffi ciently high (T > T̃ ), the trade-off goes in

favour of competitive tendering, which yields expected cost reductions that more than outweigh

the lower treatment benefits.8

A comparison of equilibrium drug prices under the two policy schemes is illustrated in Figure

1 for a particular numerical example in which v = 5, τ = 2 and β = 3/4. The equilibrium price

under decentralised competition (p∗) is given by the solid thin curve, while the expected average

8See the proof of Proposition 3 in Appendix A for explicit expressions of T̂ and T̃ .
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price under competitive tendering (pe) is given by the solid thick curve. The dashed curves show

the upper and lower bounds of the equilibrium mixed strategies under competitive tendering.

[ Figure 1 here ]

In this example, pe > (<) p∗ if T < (>) T̂ = 2/3. In order to interpret the magnitude

of this threshold, notice that the maximum loss in therapeutic benefit of being prescribed a

suboptimal drug is given by τ = 2. This happens if drug 1 is given to a patient with x = 1, or

if drug 2 is given to a patient with x = 0. Thus, competitive tendering yields higher expected

treatment costs than decentralised competition if the loss in therapeutic benefit tolerated by the

prescribing physician is less than one third (T̂ /τ) of the maximum potential loss. Furthermore,

pmin > (<) p∗ if T < (>) 2/5, which implies that competitive tendering yields for sure higher

drug prices than decentralised competition if the tolerated loss in therapeutic benefit is less

than 20% of the maximum potential loss.

An alternative interpretation follows from the fact that T -values of 2/3 and 2/5 are equiva-

lent to market shares of 2/3 and 3/5, respectively, for the preferred drug.9 Thus, for competitive

tendering to yield lower expected costs than decentralised competition, more than two thirds of

the patients must be prescribed the preferred drug. On the other hand, competitive tendering

will for sure yield higher costs if the prescription decisions are such that less than 60% of the

patients are prescribed the preferred drug.

Although not shown in the figure, it is also easily verified that T̃ = 8 − (4/3)
√

30 ≈

0.698, which means that higher expected treatment costs under decentralised competition is

outweighed by higher treatment benefits only for a very narrow range of T -values. This suggests

that, in terms of overall surplus for the health plan, the relative merits of the two policy schemes

are predominantly determined by the effect on expected treatment costs.

As evidenced by a comparison of (4) and (13), a key difference between decentralised compe-

tition and competitive tendering is that equilibrium drug prices depend on expected treatment

benefits in the latter pricing scheme but not in the former.10 The implications of this feature are

illustrated in Figure 2, which shows a comparison of equilibrium drug prices for the same nu-

merical example as in Figure 1, with the only exception that the maximum therapeutic benefit

is increased from 5 to 10.

9This follows directly from (8).
10This is true as long as β is suffi ciently high to induce an interior-solution Nash equilibrium under decentralised

competition.
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[ Figure 2 here ]

Comparing Figure 1 and Figure 2, we see that the only effect of a higher therapeutic benefit

(v) is an increase in both the lower and upper bounds of the equilibrium price distribution, as well

as the expected average price, under competitive tendering. In contrast, the equilibrium price

under decentralised competition is unchanged. A higher therapeutic benefit therefore increases

the scope for drug prices to be higher under competitive tendering. In the example given in

Figure 2, pe > (<) p∗ if T < (>) T̂ = 38/27, which implies that competitive tendering yields

higher expected drug expenditures than decentralised competition unless the loss in therapeutic

benefit tolerated by the prescribing physician is more than 70% (T̂ /τ = 19/27) of the maximum

potential loss. Or, alternatively, competitive tendering yields higher expected treatment costs

unless more than 85% of patients are being prescribed the preferred drug.11

The two examples given in Figure 1 and Figure 2 are also illustrative in highlighting the

implications of imposing a certain target-value of T . In the Danish model, for example, the

competitive tendering policy explicitly allows for a 20% deviation from the preferred drug on

average, as discussed in the Introduction. In the context of our numerical example, this cor-

responds to a T -value of (3/5)τ = 1.2.12 In the example in Figure 1, with a relatively low

therapeutic benefit of the two drugs, competitive tendering then yields an expected equilibrium

drug price of pe = 8/5, whereas in Figure 2, with a higher therapeutic benefit, the expected

drug price is pe = 18/5. In both cases, the equilibrium price under decentralised competition

is p∗ = 8/3. Thus, compared with decentralised competition, competitive tendering with 80%

market share for the preferred drug yields a 40% expected reduction in drug expenditures if

v = 5 (Figure 1), but a 35% increase in expected treatment costs if instead v = 10 (Figure 2).

These examples illustrate that the relative merit of competitive tendering, in terms of reduc-

ing drug expenditures, crucially depends on the size of the expected therapeutic benefits of the

drugs. These benefits do not affect (interior-solution) drug prices under decentralised compe-

tition, where the producers’pricing incentives are only governed by the prescribing physicians’

price responsiveness and the degree of therapeutic substitutability between the two drugs. Under

competitive tendering, in contrast, the equilibrium pricing strategies are tied to the therapeutic

benefits of the two drugs, as explained above. All else equal, the scope for competitive tendering

to yield lower drug prices is therefore inversely related to the therapeutic benefits of the drugs.

11This threshold market share is found by setting τ = 2 and T = 38/27 in the expression for qi in (8).
12This value is found by setting qj in (8) equal to 1/5 and solving for T .

15



5.4 Optimal choice of treatment loss threshold

In the above analysis we have assumed that the treatment loss threshold T is an exogenous

parameter reflecting physician characteristics (i.e., physicians’tolerance for prescribing a ther-

apeutically suboptimal therapy), while acknowledging that this threshold might be at least

partially influenced by policy. Suppose instead that T is a fully flexible policy variable that can

be freely chosen to maximise a certain welfare objective. Although this might not necessarily be

the most realistic assumption, it is nevertheless useful to explore its implications. What would

in this case be the optimal choice of T?

The answer to this question depends crucially on the choice of objective function. From the

perspective of a surplus-maximising health plan, it follows directly from Corollary 1 that the

surplus is maximised at T = τ , which implies that the tender is a ‘winner-takes-all’competition.

On the other hand, from the perspective of a social planner that maximises the total surplus

in the economy, including the profits of the pharmaceutical companies, the optimal choice is

at the other extreme, namely T = 0. The reason is that the total surplus is given by the

total treatment benefits, which are maximised if no treatment loss is accepted, i.e., T = 0.

But this means of course that competitive tenders are never welfare-superior to decentralised

competition.

A more realistic welfare objective might be one in which the health plan’s surplus is given

larger weight than the profits of the pharmaceutical companies. This is captured by defining

the following welfare function:

W = H − (1− α) pe, (15)

where α ∈ (0, 1) is the welfare weight given to pharmaceutical profits. Using (13) and (14),

it is easily verified that there exists a threshold value α̂ := (v − τ) /v ∈ (0, 1), such that the

welfare-maximising choice of T is given by

T ∗ =

 τ if α ≤ α̂

2 (1− α) v if α > α̂
. (16)

Thus, as long as the weight given to pharmaceutical profits is suffi ciently high, but still less than

the weight given to the surplus of the health plan, i.e., for α ∈ (α̂, 1), the optimal treatment loss

threshold under competitive tendering is an interior solution that allows for a certain degree of

deviation from the preferred treatment, optimally trading off cost reductions against treatment
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benefits.

5.5 Robustness

The above analysis has been made using a demand system in which the therapeutic benefits

of drug treatment are perfectly negatively correlated, meaning that, if patient A derives higher

benefits than patient B from one of the drugs, then patient B derives higher benefits from the

other drug than what patient A does. In order to check the robustness of our main results

with respect to this particular assumption, we also perform the same analysis for an alternative

demand system based on uncorrelated treatment benefits, where the therapeutic benefit of drug

i is given by v − τxi, i = 1, 2, where each patient is characterised by a pair (x1, x2), and where

x1 and x2 are independent draws from a uniform distribution on [0, 1]. This implies that a given

patient’s therapeutic benefit of one of the drugs is uncorrelated with the same patient’s benefit

of being treated with the alternative drug.

This analysis is presented in Appendix B and shows that our main results are qualitatively

robust to the application of an alternative demand system based on uncorrelated treatment

effects. This is illustrated by a comparison of Figure 1 above with Figure B1 in Appendix B,

which is based on the exact same parameter configuration as Figure 1. A comparison of these

two figures show that the properties of the mixed strategy equilibrium, and the comparison

of equilibrium prices under the two policy schemes, are qualitatively very similar for the two

different demand systems. The main quantitative difference is that drug prices are lower in both

equilibria when treatment effects are uncorrelated, but less so under competitive tendering. This

implies that a comparison of the two policy schemes, in terms of expected drug expenditures

and health plan surplus, is somewhat more tilted in favour of decentralised competition. In

the example illustrated in Figure B1, expected drug expenditures are lower under competitive

tendering if T > 0.85, which implies that the preferred drug must be prescribed to at least

83% of the patients. Furthermore, competitive tendering yields a higher surplus for the health

plan only if T > 0.91, which implies that the preferred drug must be prescribed to at least 85%

of the patients. In contrast, for the same parametric example in the main model (Figure 1),

competitive tendering yields both lower expected drug expenditures and a higher surplus to the

health plan if T is such that at least 67% percent of the patients are prescribed the preferred

drug.
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6 Extensions

In this section we extend our analysis in two different directions that both imply an asymmetry

between the two therapeutically substitutable drugs. First, we consider the case of asymmetric

treatment effects, where the maximum (and expected) treatment benefit is higher for one of

the drugs. Second, we consider the case in which one of the drugs has a demand advantage

due to the existence of ‘captive’patients. In both extensions, we derive the Nash equilibrium

under competitive tendering and analyse how such asymmetries affect expected treatment costs

compared to the benchmark of decentralised competition. As shown in our analysis of the

symmetric case, differences in overall health plan surplus across the two policy schemes are

predominantly determined by differences in expected drug purchasing costs. In these extensions

we therefore restrict attention to the relative merits of the two schemes in terms of cost effi ciency.

6.1 Asymmetric treatment effects

Suppose that the two drugs are not only horizontally but also vertically differentiated. More

specifically, suppose that the maximum therapeutic benefit of drug i is vi, and that v1 > v2.

The degree of vertical differentiation is then measured by

∆v := v1 − v2 > 0. (17)

The expected treatment benefit of drug i is given by

vi := vi −
τ

2
, (18)

which means that ∆v also measures the difference in expected treatment benefits between the

two drugs; i.e., ∆v = v1− v2 > 0. In the following we will therefore intermittently refer to drug

1 and drug 2 as the high-quality drug and the low-quality drug, respectively.

With asymmetric treatment effects, the demand for the preferred and non-preferred drugs

depends on the identity of the winner of the tender. Suppose that drug 1 is the preferred

drug. For a given patient, the net treatment gain of being treated with this drug instead of the

therapeutic alternative is given by

∆u1 (x) = v1 − τx− (v2 − τ (1− x)) = ∆v + (1− 2x) τ . (19)
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All patients for which ∆u1 (x) ≥ −T will be prescribed the preferred drug, while the remaining

patients will be prescribed the other drug. Drug demand when drug 1 is the preferred drug is

then given by

q1 =
1

2
+

∆v + T

2τ
and q2 =

1

2
−
(

∆v + T

2τ

)
. (20)

If instead drug 2 is the preferred drug, the net treatment gain of being treated with this drug

instead of the therapeutic alternative is given by

∆u2 (x) = −∆v + (2x− 1) τ . (21)

When all patients for which ∆u2 (x) ≥ −T are prescribed the preferred drug, drug demand

when drug 2 is the preferred drug is given by

q1 =
1

2
+

∆v − T
2τ

and q2 =
1

2
−
(

∆v − T
2τ

)
. (22)

6.1.1 Nash equilibrium

With asymmetric treatment effects, the competitive tender has an asymmetric Nash equilibrium

in either pure or mixed strategies, depending on the exact parameter configuration. The next

proposition provides a complete characterisation of each possibility:

Proposition 4 Let ∆v and T be characterised by

0 < ∆v <
(v1 + v2) τ

2v1
, (23)

and

0 < T < τ −∆v, (24)

so that both drugs have positive demand regardless of the outcome of the tender.

(i) If T ≤ T , where

T :=
(τ + ∆v) ∆v

v1 + v2
< τ −∆v, (25)

the competitive tender has an asymmetric pure-strategy Nash equilibrium in which pi = vi,

i = 1, 2.

(ii) If T ∈
(
T , τ −∆v

)
, the competitive tender has an asymmetric mixed-strategy Nash

equilibrium in which both producers randomise their bids over the interval
[
pmin, v2

]
according
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to the cumulative distribution functions

F1 (p) =
1

2

(
1 +

τ −∆v

T

)(
1− pmin

p

)
(26)

and

F2 (p) =
1

2

(
1 +

τ + ∆v

T

)(
1− pmin

p

)
> F1 (p) , (27)

where

pmin :=

(
τ − T + ∆v

τ + T + ∆v

)
v1, (28)

and the producer of the high-quality drug 1 additionally bids v1 with a strictly positive probability

given by

Pr (p1 = v1) =

[
(2 (v1 + v2)− T )T + τ2 − (∆v)2

]
∆v

2 (τ + T + ∆v)Tv2
. (29)

In this equilibrium, the producer of the low-quality drug 2 also bids its maximum price, v2, with

a strictly positive probability given by

Pr (p2 = v2) =
(τ − T + ∆v) ∆v

2Tv2
. (30)

When the two drugs have different maximum (and expected) treatment benefits, the two

drug producers are faced with different upper price bounds in the competitive tender (i.e.,

v1 > v2). This, in turn, facilitates the existence of a pure-strategy Nash equilibrium when T is

suffi ciently low. The reason is that, if the producer of the high-quality drug bids p1 = v1, the

price-undercutting response p2 = v1 − ε is no longer a feasible bid. Instead, the best response

(from the set of feasible bids) to p1 = v1 is p2 = v2, which is a discretely lower bid. And as long

as T is suffi ciently low, the demand gain for the high-quality producer of having the preferred

drug is not large enough to outweigh the profit loss associated with the price reduction needed

to win the tender. In other words, p1 = v1 is also the best response to p2 = v2 if T < T ,

establishing the existence of a pure-strategy Nash equilibrium in which each producer bids its

maximum price and the low-quality drug becomes the preferred drug.

On the other hand, if T > T , it is more profitable for the producer of the high-quality

drug to be the preferred drug with a price p1 = v2 − ε than to be the non-preferred drug

with a price p1 = v1. In this case, a pure-strategy Nash equilibrium does not exist, as in the

symmetric case analysed in Section 5. Instead, there is a mixed-strategy Nash equilibrium in
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which both producers randomise their bids over the price interval
[
pmin, v2

]
, and the producer

of the high-quality drug additionally bids p1 = v1 with a positive probability. Within the

parameter set for which the mixed-strategy Nash equilibrium exists, a lower treatment loss

threshold T increases the lower bound pmin and also increases the probability mass that the

low- and high-quality producers place on the upper bounds v2 and v1, respectively, in the mixed-

strategy equilibrium (i.e., ∂F1 (v2) /∂T > 0 and ∂F2 (v2) /∂T > 0). When T approaches T from

above, pmin approaches v2 while F1 (v2) and F2 (v2) approach zero. Thus, the mixed-strategy

equilibrium presented in the second part of Proposition 4 converges monotonically towards the

pure-strategy equilibrium presented in the first part of the proposition when the treatment loss

threshold T approaches T from above.

If we compare the mixed-strategy Nash equilibrium given by the second part of Proposition

4 with the symmetric mixed-strategy equilibrium given by Proposition 1, there are at least two

notable differences. Importantly, the mixed strategy of the high-quality producer first-order

stochastically dominates the mixed strategy of the low-quality producer, i.e., F1 (p) < F2 (p),

implying that the tender is most likely won by the low-quality drug. There are two different

effects that contribute to this. First, compared with the case of symmetric treatment effects

(i.e., ∆v = 0), vertical differentiation implies that a certain amount of demand (given by∆v/2τ)

is shifted towards the high-quality drug regardless of whether it is has the status of preferred

drug or not. For any ∆v > 0, the relative demand gain of having its treatment status changed

from non-preferred to preferred is therefore smaller for the high-quality drug than for the low-

quality drug. This implies in turn that the producer of the former (latter) drug has weaker

(stronger) incentives to win the tender and will thus more likely bid a higher (lower) price.

Second, vertical differentiation also implies that the expected treatment effect, and thus the

maximum accepted price, is higher for the high-quality drug than for the low-quality drug, i.e.,

v1 > v2, which in turn means that the producer of the high-quality drug can potentially sell

its drug with a higher profit margin than what the producer of the low-quality drug can do.

However, this advantage can only be fully exploited by setting a price p1 = v1 > v2, which will

make the low-quality drug the preferred drug. Thus, the first-order stochastic dominance of

the high-quality producer’s equilibrium strategy is also partly caused by the fact that the bid

p1 = v1 is made with a strictly positive probability.

Another, and perhaps more striking, characteristic of the mixed-strategy equilibrium is that

the lower price bound, pmin, is monotonically increasing in v1 and monotonically decreasing in

21



v2. This implies that increased vertical differentiation in itself will lead to a higher minimum

drug price in the market, even if such differentiation is purely caused by a lower treatment benefit

of the low-quality drug. The reason is that a larger difference in treatment benefits makes it

relatively more profitable for the producer of the high-quality drug to sell a non-preferred drug

at the maximum price p1 = v1. In turn, this increases the minimum price needed to make it

equally profitable for the same producer to sell a preferred drug, thus increasing the minimum

bound pmin in the producers’equilibrium mixed strategies.

6.1.2 Competitive tenders vs. decentralised competition

We proceed by exploring how the presence of asymmetric treatment benefits affects the relative

merits of competitive tendering versus decentralised competition in terms of expected treatment

costs. We restrict attention to cases in which the parameters β and T are such that there is de

facto therapeutic competition (with equilibrium prices below the maximum levels) under both

policy schemes.

The Nash equilibrium under decentralised competition is derived in Appendix C, where we

show that an interior solution exists if

β >
3τ + ∆v

3v1
. (31)

In this case, the average equilibrium drug price is given by

p∗ =
τ

β
+

(∆v)2

9βτ
, (32)

which implies that vertical differentiation is anti-competitive and leads to higher treatment costs.

This is driven by a reallocation of demand towards the more expensive (higher-quality) drug.

As is evident from (C3) in Appendix C, an increase in the degree of vertical differentiation (∆v)

leads to an increase (decrease) in the price of the high-quality (low-quality) drug in such a way

that the unweighted average drug price remains constant. However, since∆p := p∗1−p∗2 is smaller

than ∆v, a larger share of patients will be prescribed the high-quality drug in equilibrium, thus

contributing to a higher average drug price.

The expected average drug price under competitive tendering is highly involved and thus

not reported explicitly. A precise characterisation of this price can be found in Appendix C.

The complexity of the asymmetric mixed-strategy equilibrium makes an analytical comparison
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infeasible and we therefore resort to numerical simulations. Figure 3 shows how the (expected)

average drug price depends on the degree of vertical differentiation under each of the two

policy schemes in a specific numerical example where v1 = 5 + (∆v/2) and v2 = 5 − (∆v/2).

The degree of vertical differentiation is thus measured as a mean-preserving spread around an

expected therapeutic benefit of 5−(τ/2). The other parameters are given by τ = 2, T = 2/3 and

β = 3/4, and we restrict attention to interior-solution Nash equilibria, which in this example

exist for ∆v ∈ (0, 4/3) . The average price under decentralised competition (p∗) is given by the

solid thin curve whereas the expected average price under competitive tendering (pe) is given

by the solid thick curve. The dashed curves show the boundaries of the equilibrium mixed

strategies under competitive tendering. In order to highlight the equilibrium price effects of

vertical differentiation, the parameters are chosen such that p∗ = pe for ∆v = 0.

[ Figure 3 here ]

We know from (32) that the average drug price under decentralised competition increases

with the degree of vertical differentiation between the drugs. However, Figure 3 reveals that

the magnitude of this positive relationship is rather negligible. Even if ∆v = 4/3, which

implies that the expected therapeutic benefit of the high-quality drug is 40% higher than the

expected benefit of the low-quality drug, this only yields an average price increase of less than

5% compared with the symmetric case of ∆v = 0. The small magnitude of this effect is caused

by the fact that increased vertical differentiation does not affect the unweighted average drug

price under decentralised competition, as previously mentioned. The average price increase is

solely due to a (relatively modest) shift in demand towards the high-quality drug.

In stark contrast, increased vertical differentiation yields a much stronger increase in the

expected average price under competitive tendering. An increase in ∆v from 0 to 4/3 yields

an increase in the expected average price, and thus an increase in expected treatment costs,

of more than 47%. Two factors contribute to this. First, increased vertical differentiation

implies a higher upper price bound v1 for the high-quality drug. This has no effect on drug

pricing under decentralised competition, but increases the expected price under competitive

tendering since the high-quality producer bids p1 = v1 with positive probability in the mixed-

strategy Nash equilibrium. Second, increased vertical differentiation also increases the lower

price bound v2, which again has no effect on drug pricing under decentralised competition,

but clearly contributes to a higher expected price under competitive tendering. Thus, the
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numerical example shown in Figure 2 suggests that differences in therapeutic benefits between

competing drugs have a much stronger cost-driving effect under competitive tendering than

under decentralised competition.

6.2 Captive patients

Suppose that drug 1 has been longer on the market than drug 2 and therefore has been able to

obtain a captive demand segment consisting of patients who are reluctant (or whose prescribing

physician is reluctant) to switch to a new therapeutic alternative.13 More specifically, suppose

that, for each value of x, a share λ of the patients will be prescribed drug 1 regardless of whether

this is offi cially the preferred drug or not. In order to avoid confounding effects, we return here

to our main assumption that the two drugs are horizontally but not vertically differentiated.

The presence of such a captive patient segment implies a modification of the demand func-

tions in (8). More specifically, if drug 1 is the preferred drug (i.e., if p1 < p2), the demand for

the two drugs is given by

q1 = λ+ (1− λ)

(
1

2
+
T

2τ

)
and q2 = (1− λ)

(
1

2
− T

2τ

)
. (33)

Otherwise, if drug 2 is the preferred drug (i.e., if p1 > p2), the demand functions are given by

q1 = λ+ (1− λ)

(
1

2
− T

2τ

)
and q2 = (1− λ)

(
1

2
+
T

2τ

)
. (34)

6.2.1 Nash equilibrium

As for the symmetric case analysed in Section 5, the competitive tender has a Nash equilibrium

only in mixed strategies also when some patients are captive to one of the drugs. The next

proposition characterises the mixed-strategy Nash equilibrium in this case.

Proposition 5 If T ∈ (0, τ) and a share λ > 0 of the patients are captive to drug 1, the

competitive tender has an asymmetric mixed-strategy Nash equilibrium in which both producers

randomise their bids over the interval
[
pmin, v

]
, according to the following cumulative distribu-

tion functions:

F1 (p) =
1

2

(
1 +

τ

T

)(
1− pmin

p

)
, (35)

13This assumption was introduced in the canonical generic entry model by Frank and Salkever (1992) in their
study of generic competition in the presence of brand-loyal patients. Maini et al. (2021) incorporate the same
assumption into their analysis of biosimilar competition in the US..

24



and

F2 (p) =
1

2

(
1 +

1 + λ

1− λ
τ

T

)(
1− pmin

p

)
> F1 (p) , (36)

where

pmin =
(1 + λ) τ − (1− λ)T

(1 + λ) τ + (1− λ)T
v. (37)

In this equilibrium, the producer of drug 1 bids v with a strictly positive probability, given by

Pr (p1 = v) =
2λτ

(1 + λ) τ + (1− λ)T
. (38)

The existence of a captive demand segment implies that the two drug producers compete

for a smaller share of the market, given by 1 − λ. The logic of Lemma 1 still applies and a

Nash equilibrium in pure strategies does not exist for T ∈ (0, τ). However, the mixed-strategy

Nash equilibrium is now asymmetric for λ > 0 in the sense that F1 (p) first-order stochastically

dominates F2 (p), implying that the tender is most likely won by the producer of drug 2. Thus, as

for the case of asymmetric treatment effects, the disadvantaged producer has a higher probability

of ending up selling the preferred drug. This is explained by a demand effect similar to the first

of the two effects explaining the qualitatively equivalent result in case of asymmetric treatment

effects (cf. the second part of Proposition 4). The demand advantage of having captive patients

implies that the relative demand gain of selling a preferred drug is smaller for the producer of

the drug with captive patients. This producer will therefore have weaker incentives to win the

tender than the producer of the drug without captive patients, and will therefore submit the

maximum bid v with a strictly positive probability, which in turn implies F1 (p) < F2 (p) for all

p ∈
(
pmin, v

)
. Relatedly, the existence of captive patients also increases the lower bound of the

producers’equilibrium bids, since it increases the minimum price at which winning the tender

is as profitable for the producer of drug 1 as bidding v and selling a non-preferred drug. In the

limit case of λ → 1, drug 1 has all demand regardless of the outcome of the tender, and the

lower bound pmin therefore converges to the maximum price v.

6.2.2 Competitive tenders vs. decentralised competition

Let us once more compare the two policy schemes in terms of expected treatment costs, this

time with a captive demand segment for drug 1. As before, we restrict attention to interior-

solution equilibria, which under decentralised competition requires that the relative size of the
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captive segment is limited to

λ <
3 (βv − τ)

3βv + τ
. (39)

In Appendix C we show that the average drug price under decentralised competition in this case

is given by

p∗ =

(
9 + λ2

9 (1− λ)

)
τ

β
. (40)

It follows directly from (40) that the average price is monotonically increasing in λ. Thus, the

presence of captive patients is anti-competitive and leads to higher treatment costs. The reason

is that the demand for drug 1 becomes less price-elastic, which in turn means that profits are

maximised at a higher price. Due to strategic complementarity, this will also lead to a higher

price for drug 2.

In Appendix C we also show that, under competitive tendering, the expected average drug

price is given by

pe =
(1− λ)Tη − (τ + T ) ((1 + λ) τ − (1− λ)T )

(
(1 + λ) τ + (1− λ) T2

) (
ln pmin

v

)
(λτ)2

(1− λ) τv−1 ((1 + λ) τ + (1− λ)T )2 T 2
, (41)

where

η : = (1− λ) ((1 + 2λ (1 + λ))T + (1 + 3λ (1 + λ)) τ)Tτ2

− (1− λ)2 (τ + (1− λ)T )T 3 − 2 (1 + λ)λ2τ4. (42)

The complexity of (41) makes an analytical comparison infeasible and we therefore once more

resort to a numerical example.

In Figure 4 we show how equilibrium drug prices under decentralised competition and com-

petitive tendering depend on the size of the captive demand segment (λ) for the same numerical

example as we have used previously, with v = 5, τ = 2, T = 2/3 and β = 3/4. We restrict once

more attention to interior-solution equilibria, which in this example exist for λ ∈ (0, 3/11). As

before, the solid thin curve depicts the average drug price under decentralised competition (p∗),

the solid thick curve shows the expected average drug price under competitive tendering (pe),

while the dashed curves show the upper and lower bounds of the equilibrium mixed strategies.

In order to isolate the effect of captive patients, the value of T is chosen such that p∗ = pe for

λ = 0.
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[ Figure 4 here ]

We already know from (40) that a larger captive segment yields a higher average drug price

under decentralised competition. The example shown in Figure 4 confirms that a similar rela-

tionship exists under competitive tendering. This is no surprise, given the previously discussed

characteristics of the mixed-strategy Nash equilibrium given by Proposition 5. A larger captive

segment implies that the lower price bound pmin increases and that the producer with the de-

mand advantage bids the maximum price v with a higher probability. Both effects contribute to

a higher expected average price. However, in contrast to the case of asymmetric treatment ben-

efits (shown in Figure 3), the effects of captive patients on average drug prices are much more

similar across the two policy schemes. A difference in expected treatment costs only becomes

somewhat pronounced if the size of the captive segment is at least 15%, and the cost-driving

effect is in this case larger under decentralised competition. Still, if λ = 3/11, which implies

that more than 27% of the patients are captive to drug 1, expected treatment costs are only

9.7% higher under decentralised competition than under competitive tendering.

7 Concluding remarks

This paper has analysed the economic consequences of centralised competitive tendering in

pharmaceutical markets where patented drugs are therapeutic substitutes. Using a standard

duopoly model with horizontally differentiated treatment effects of the two drug therapies, we

introduce physicians’willingness to accept treatment loss as a key factor governing substitution

in tender-based procurement.

We show that decentralised competition, in which physicians balance therapeutic benefits

against drug costs at the individual patient level, always yields effi cient allocation and thus

maximises aggregate treatment benefits. By contrast, competitive tendering distorts treatment

allocations whenever substitution is tolerated, but may reduce expected drug expenditures if the

substitution threshold is suffi ciently high. Tendering therefore involves an inherent trade-off:

lower costs at the expense of lower treatment benefits.

A key insight is that competitive tenders generate mixed-strategy bidding behaviour. Be-

cause the non-preferred drug retains some demand, producers balance the value of winning the

tender against the profits from pricing at the upper bound. The expected tender price is de-

creasing in the tolerated loss of therapeutic benefit, while expected clinical benefits move in the
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opposite direction. Consequently, tendering outperforms decentralised competition only when

the physician substitution threshold is suffi ciently large. Moreover, the scope for tender-based

cost savings declines as the therapeutic benefits– and thus the maximum admissible prices– of

the drugs increase.

Two extensions highlight how market asymmetries interact with procurement design. With

vertical product differentiation, the lower-quality drug is more likely to win the tender, amplify-

ing expected expenditure relative to decentralised competition. With captive patient segments,

both procurement schemes become more costly, though decentralised competition is somewhat

more exposed.

Overall, our analysis underscores that the performance of competitive tendering critically

depends on the extent to which clinicians and policymakers are willing to accept therapeutic

substitution. This substitution tolerance shapes bidding incentives, price outcomes, and the

balance between cost containment and treatment effi ciency.

By way of conclusion, we would like to highlight a couple of avenues for future research.

First, many drug therapies treat multiple indications, implying that firms must balance marginal

revenues and competitive conditions across different markets when setting prices. Our analysis

abstracts from these complexities by focusing on single-indication drugs (or multi-indication

drugs with similar demand and competitive environments across indications). In related work

(Brekke et al., 2025), we examine multi-indication pricing incentives under decentralised compe-

tition. Extending the present framework to analyse competitive tendering for multi-indication

drugs is a natural next step, but it would add substantial analytical complexity and, in our

view, warrants a separate investigation.

Second, we have not considered how competitive tendering affects innovation incentives.

Although modelling the R&D stage is beyond the scope of this paper, our analysis offers some

suggestive implications. Competitive tendering distorts prescribing away from the effi cient

allocation, which is likely to distort innovation incentives as well. Moreover, tendering gener-

ates asymmetric profit distributions between preferred and non-preferred products– even when

drugs are ex ante symmetric– and may also reduce patent rents by inducing lower prices than

decentralised competition. These mechanisms suggest that decentralised competition might be

more conducive to socially desirable innovation incentives than competitive tendering, although

it is impossible to derive any strong conclusions without a full-fledged analysis, which is left for

further research.
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Appendix A: Proofs

Proof of Lemma 1

From (8), the demand gain of winning the tender is given by T/τ . Thus, for any T ∈ (0, τ), each

producer can obtain a discrete increase in demand by reducing its bid from marginally above

to marginally below the bid of the competing producer. Such price undercutting is therefore

profitable for all bids strictly higher than marginal cost. Furthermore, since demand for the

non-preferred drug is strictly positive for all T ∈ (0, τ), the best response for producer i to

any bid pj ∈ [0, v] is either to price undercut by bidding pi = pj − ε or to bid the maximum

price pi = v. The latter strategy is clearly optimal if pj is suffi ciently close to marginal cost,

whereas the former strategy is clearly optimal if pj is suffi ciently close to the maximum price

v. This means that no pair of prices for which both producers play their best response exists.

Consequently, a Nash equilibrium in pure strategies does not exist.

Proof of Proposition 1

In a mixed-strategy Nash equilibrium, the two producers must necessarily randomise their bids

over the same interval
[
pmin, pmax

]
. Since the bid v yields the highest profits of all non-winning

bids, the upper bound pmax must necessarily be equal to v. Suppose that one of the producers

plays such a mixed strategy and randomises on
[
pmin, v

]
according to a cumulative distribution

function F (p). The expected profits of the other producer, if it plays p as a pure strategy, are

then given by

πe (p) = p

(
1

2
− T

2τ

)
F (p) + p

(
1

2
+
T

2τ

)
(1− F (p)) . (A1)

F (p) is an equilibrium strategy if πe (p) is constant for all p ∈
[
pmin, v

]
. Solving (A1) for F (p)

yields

F (p) =
τ + T

2T
− τπe

Tp
. (A2)

The expected equilibrium profits are then found by setting pmax = v and using F (v) = 1,

yielding

πe =

(
τ − T

2τ

)
v. (A3)

By inserting the value of πe from (A3) into (A2), we derive the equilibrium mixed strategy given

by (10) in Proposition 1. Finally, the lower bound pmin is found by setting p = pmin in (10) and

solving F
(
pmin

)
= 0 for pmin, yielding the expression given by (11) in Proposition 1. Finally,
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since each producer wins the tender for sure by setting a price equal to pmin, which yields a

profit πe, it follows directly that setting any price p < pmin yields a profit strictly lower than πe

if the competing producer plays the mixed strategy given by (10).

Proof of Proposition 2

Notice first that the equilibrium distribution function F (p), given by (10), has an associated

probability density function given by

f (p) =
∂F (p)

∂p
=

(τ − T ) v

2Tp2
. (A4)

Let the lowest bid be denoted by pL := min (p1, p2). The probability that the lowest bid is

below some threshold value p is equal to the probability that at least one of the bids is below

p, and is thus given by

Pr (pL ≤ p) = 1− [Pr (p1 > p) ∗ Pr (p2 > p)] . (A5)

The cumulative distribution function of pL, denoted by FL, is therefore given by

FL (p) = 1− (1− F (p))2 , (A6)

with the following associated probability density function:

fL (p) =
∂FL (p)

∂p
= 2 (1− F (p)) f (p) . (A7)

The expected value of the lowest price, denoted by peL, is then given by

peL =

∫ v

pmin
pfL (p) dp =

(τ − T )
[
2T + (τ − T ) ln

(
τ−T
τ+T

)]
v

2T 2
. (A8)

Similarly, let the highest bid be denoted by pH := max (p1, p2). The probability that the

highest bid is below some threshold value p is equal to the probability that both bids are below

p, and is thus given by

Pr (pH ≤ p) = Pr (p1 ≤ p) ∗ Pr (p2 ≤ p) . (A9)
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The cumulative distribution function of pH , denoted by FH , is therefore given by

FH (p) = (F (p))2 , (A10)

with the following associated probability density function:

fH (p) =
∂FH (p)

∂p
= 2F (p) f (p) . (A11)

The expected value of the highest bid, denoted by peH , is then given by

peH =

∫ v

pmin
pfH (p) dp = −

(τ − T )
[
2T + (τ + T ) ln

(
τ−T
T+τ

)]
v

2T 2
. (A12)

The producer with the lowest price wins the tender and the preferred drug obtains demand

equal to 1/2+T/2τ . With a unit mass of patients, the expected average price is therefore given

by

pe =

(
1

2
+
T

2τ

)
peL +

(
1

2
− T

2τ

)
peH =

(
1− T

τ

)
v. (A13)

Since the preferred drug obtains a demand equal to 1/2 + T/2τ , the aggregate treatment

benefits are given by

H =

∫ 1
2
+ T
2τ

0
(v − τx) dx+

∫ 1
2
− T
2τ

0
(v − τx) dx = v − τ

4
− T 2

4τ
. (A14)

Proof of Corollary 1

The effects of T on pe and H follow directly from (13) and (14), respectively. As for the surplus

of a health plan that places equal weights on treatment benefits and treatment costs, this is

given by

S = H − pe =
T

τ

(
v − T

4

)
+
τ

4
. (A15)

From (A15) we easily derive

∂S

∂T
=

1

τ

(
v − T

2

)
=

1

τ

(
v −

(
τ + T

2

))
> 0, (A16)

where the positive sign is ensured by the assumption that all patients have positive treatment

benefits of both drugs; i.e, v > τ .
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Proof of Proposition 3

(i) A comparison of (5) and (14) yields

H −H∗ = −T
2

4τ
< 0. (A17)

(ii) A comparison of (4) and (13) yields

pe − p∗ =

(
1− T

τ

)
v − τ

β
< (>) 0 if T > (<) T̂ :=

(
1− τ

βv

)
τ , (A18)

where T̂ > 0 for all parameter values that yield an interior-solution Nash equilibrium under

decentralised competition (which requires β > τ/v).

(ii) A comparison of (6) and (13)-(14) yields

∆S := (H − pe)− S∗ =
2 (2 + β) τ2 − β (T + 2τ)T

4βτ
−
(

1− T

τ

)
v. (A19)

From (A19) it is easily confirmed that ∆S is monotonically increasing in T :

∂ (∆S)

∂T
=

1

τ

(
v −

(
τ + T

2

))
> 0, (A20)

where the positive sign of (A20) is ensured by the assumption v > τ . Furthermore, it also

follows from (A19) that

lim
T→0

∆S = −
(
v −

(
2 + β

2β

)
τ

)
< 0 (A21)

and

lim
T→τ

∆S =
(4− β) τ

4β
> 0, (A22)

where the negative sign of (A21) is confirmed by imposing the condition for an interior-solution

Nash equilibrium under decentralised competition (β > τ/v). Thus, there exists a threshold

value of T , given by T̃ ∈ (0, τ), such that ∆S < (>) 0 if T < (>) T̃ . Moreover, since H < H∗

and pe = p∗ for T = T̂ , and since ∆S = (H −H∗)− (pe − p∗), it necessarily follows that T̃ > T̂ .

Proof of Proposition 4

(i) Suppose that the low-quality producer bids p2 ∈ [0, v2]. The high-quality producer’s best

response to such a bid is either p1 = p2 − ε or p1 = v1. In turn, the low-quality producer’s
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best response to the former bid is either p2 = p1− ε or p2 = v2, while the same producer’s best

response to the latter bid is p2 = v2. Thus, if a pure-strategy Nash Equilibrium exists, it must

necessarily be given by p1 = v1 and p2 = v2. Since p2 = v2 is always a best response to p1 = v1,

this equilibrium exists if p1 = v1 is a best response to p2 = v2, which requires

π1 (p1 = v1, p2 = v2) ≥ π1 (p1 = v2 − ε, p2 = v2) . (A23)

Using the demand functions given by (20) and (22), and letting ε → 0, this condition is given

by

v1

(
1

2
+

(
∆v − T

2τ

))
≥ v2

(
1

2
+

∆v + T

2τ

)
, (A24)

which reduces to T ≤ T , where T is given by (25) in Proposition 4.

(ii) Suppose that T > T , such that no pure-strategy Nash Equilibrium exists. In this case,

a candidate mixed-strategy Nash Equilibrium is that the low-quality producer randomises over

an interval
[
pmin, v2

]
while high-quality producer randomises over the same price interval and

additionally plays p = v1 with some positive probability. For each producer, playing the pure

strategy pmin when the competing producer plays the equilibrium mixed strategy yields higher

profits than setting a price marginally below pmin only if the tender is won for sure by setting

a price pmin. Thus, the equilibrium strategies cannot have a mass point on pmin. This implies

in turn that the high-quality producer will win the tender for sure by playing the pure strategy

p1 = pmin, yielding a profit of

π1
(
p1 = pmin

)
= pmin

(
1

2
+

∆v + T

2τ

)
, (A25)

while the low-quality producer will win the tender for sure if the high-quality producer plays

the pure strategy p1 = v1, yielding a profit for the latter producer of

π1 (p1 = v1) = v1

(
1

2
+

(
∆v − T

2τ

))
. (A26)

Since playing any p1 ∈
[
pmin, v2

]
or p1 = v1 as a pure strategy must give the high-quality

producer the same profits when the low-quality producer plays the equilibrium mixed strategy,

the lower bound pmin is implicitly given by

π1
(
p1 = pmin

)
= π1 (p1 = v1) , (A27)
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yielding the value of pmin given by (28) in Proposition 4.

Suppose that the high-quality producer randomises over the interval
[
pmin, v2

]
according

to a cumulative distribution function F1 (p). The low-quality producer’s expected profits of

playing a pure strategy p2 are then given by

πe2 (p2) = p2

(
1

2
−
(

∆v − T
2τ

))
(1− F1 (p2)) + p2

(
1

2
−
(

∆v + T

2τ

))
F1 (p2) . (A28)

If F1 (p) is an equilibrium strategy, πe2 (p2) must be constant for all p2 ∈
[
pmin, v2

]
. Solving

(A28) for F1 (p) when πe2 (p2) = πe2 yields

F1 (p) =
(τ + T −∆v) p− 2τπe2

2Tp
. (A29)

Using the fact that F1
(
pmin

)
= 0 we derive

πe2 = pmin
(

1

2
−
(

∆v − T
2τ

))
, (A30)

which is higher than the profits the low-quality producer can earn by setting any price p2 < pmin.

The mixed strategy of the high-quality producer is thus found by substituting the value of πe2

from (A30) into (A29), yielding the expression for F1 (p) given by (26) in Proposition 4. It is

easily confirmed that F1 (v2) < 1 for ∆v > 0, which implies that the high-quality producer bids

p1 = v1 with a strictly positive probability given by

Pr (p1 = v1) = 1− F1 (v2) , (A31)

whose explicit expression is given by (29) in Proposition 4.

Similarly, suppose that the low-quality producer randomises according to F2 (p). The high-

quality producer’s expected profits of playing any p1 ∈
[
pmin, v2

]
as a pure strategy are then

given by

πe1 (p1) = p1

(
1

2
+

∆v + T

2τ

)
(1− F2 (p1)) + p1

(
1

2
+

(
∆v − T

2τ

))
F2 (p1) . (A32)

If F2 (p) is an equilibrium strategy, πe1 (p1) must be constant for all p1 ∈
[
pmin, v2

]
and equal to

πe1 (p1 = v1) = v1

(
1

2
+

(
∆v − T

2τ

))
. (A33)
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Setting πe1 (p1) from (A32) equal to πe1 (p1 = v1) from (A33), and solving for F2, yields an

expression for F2 (p) given by (27) in Proposition 4. It is easily verified that F2
(
pmin

)
= 0 and

that

F2 (v2) =
(v1 + v2)T − (∆v + τ) ∆v

2Tv2
< 1 for ∆v > 0 and T > T . (A34)

Thus, the equilibrium strategy of the low-quality producer has a mass point on v2. It is also

easily verified that
∂pmin

∂T
< 0,

∂F1 (v2)

∂T
> 0 and

∂F2 (v2)

∂T
> 0, (A35)

and that

lim
T→T

pmin = v2 and lim
T→T

F1 (v2) = F2 (v2) = 0. (A36)

Thus, the mixed strategy Nash Equilibrium in the second part of Proposition 4 converges

monotonically to the pure strategy Nash Equilibrium given in the first part of the same propo-

sition when T approaches T from above.

Proof of Proposition 5

An obvious candidate mixed-strategy Nash Equilibrium is that both firms randomise on the

interval
[
pmin, v

]
, where pmin is such that bidding this price and winning the tender yields the

same profits for the producer of the drug with captive patients (drug 1) as bidding v and letting

the tender be won by the other drug. Using the demand functions in (33)-(34), pmin is thus

implicitly given by

v

(
λ+ (1− λ)

(
1

2
− T

2τ

))
= pmin

(
λ+ (1− λ)

(
1

2
+
T

2τ

))
, (A37)

yielding a value of pmin given by (37) in Proposition 5.

Suppose that the producer of drug 2 plays the mixed strategy F2 (p). The expected profits

of the competing producer if playing any p1 ∈
[
pmin, v

]
as a pure strategy are then given by

πe1 (p1) = p1

(
λ+ (1− λ)

(
1

2
− T

2τ

))
F2 (p1) + p1

(
λ+ (1− λ)

(
1

2
+
T

2τ

))
(1− F2 (p1)) .

(A38)

If F2 (p) is an equilibrium strategy, πe1 must be constant for all p1 ∈
[
pmin, v

]
. Setting πe1

equal to v (λ+ (1− λ) (1/2− T/2τ)) and solving for F2 yields the expression given by (36) in

Proposition 5. It is easily confirmed that F2
(
pmin

)
= 0 and F2 (v) = 1.
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Suppose that the producer of drug 1 plays a mixed strategy F1 (p). The expected profits of

the competing producer if playing any p2 ∈
[
pmin, v

]
as a pure strategy are then given by

πe2 (p2) = p2 (1− λ)

(
1

2
− T

2τ

)
F1 (p2) + p2 (1− λ)

(
1

2
+
T

2τ

)
(1− F1 (p2)) . (A39)

If F1 (p) is an equilibrium strategy, πe2 (p2) must be constant for all p2 ∈
[
pmin, v

]
. Setting

πe2 (p2) = πe2 and solving for F1 yields

F1 (p) =
τ + T

2T
− τπe2

(1− λ)Tp
. (A40)

Neither equilibrium strategy can have a mass point at the lower price bound pmin. Thus,

F1
(
pmin

)
= 0 in equilibrium. Otherwise, if F1

(
pmin

)
> 0, the producer of drug 2 would not be

guaranteed to win the tender by bidding pmin and could therefore obtain higher expected profits

by bidding slightly below pmin. Setting F1
(
pmin

)
= 0 in (A40) and solving for πe2, we derive

πe2 = (1− λ)

(
1

2
+
T

2τ

)
pmin, (A41)

which is higher than the profits that the producer of drug 2 can obtain by bidding any price

p2 < pmin. Inserting the value of πe2 from (A41) into (A40) yields an expression for F1 (p) given

by (36) in Proposition 5. It is easily verified that

F1 (v) =
(1− λ) (T + τ)

(1 + λ) τ + (1− λ)T
< 1 for λ > 0. (A42)

Thus, the equilibrium strategy of the producer with captive patients has a mass point at the

upper bound v.

Appendix B: Uncorrelated treatment effects

Suppose that the therapeutic benefit of drug i is given by v − τxi, i = 1, 2. Suppose further

that each patient is characterised by a pair (x1, x2), where x1 and x2 are independent draws

from a uniform distribution on [0, 1]. All other modelling assumptions remain the same. Notice

that the expected therapeutic benefit of each drug is the same as before and given by (1).
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B.1. Decentralised competition

Applying the same prescription criteria as in the main model, a patient will be prescribed drug

i if

v − βpi − τxi ≥ v − βpj − τxj , (B1)

which is equivalent to

xi − xj ≤
β (pj − pi)

τ
. (B2)

In order to derive drug demand, it is useful to define X := xi − xj and let FX (z) be the

cumulative distribution function of X. This function is given by

FX (z) = P (X ≤ z) = P (xi − xj ≤ z)

=


∫ 1+z
0

∫ 1
xi−z dxjdxi if −1 < z < 0

1−
∫ 1
z

∫ xi−z
0 dxjdxi if 0 ≤ z < 1

(B3)

=


1
2 + z + z2

2 if −1 < z < 0

1
2 + z − z2

2 if 0 ≤ z < 1
.

Notice that this is a triangular distribution around X = 0, with density

fX (z) =

 1 + z if −1 < z < 0

1− z if 0 ≤ z < 1
. (B4)

If the total patient mass is equal to one, demand for drug i is then given by

qi = F

(
β (pj − pi)

τ

)
=


1
2 +

β(pj−pi)
τ + 1

2

(
β(pj−p1)

τ

)2
if pj < pi

1
2 +

β(pj−pi)
τ − 1

2

(
β(pj−pi)

τ

)2
if pj ≥ pi

. (B5)

By maximising the profits of firm i, given by πi = piqi, and applying symmetry, pi = pj = p∗,

it is fairly straightforward to verify that the unique pure-strategy Nash equilibrium is given by

p∗ =


τ
2β if β ≥ τ

2v

v if β < τ
2v

. (B6)
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Thus, the equilibrium prices in the interior-solution Nash equilibrium are exactly half of the

corresponding equilibrium prices in the main model, but respond in a qualitatively similar way

to changes in τ or β.

In the symmetric equilibrium, each patient is prescribed the drug which yields the highest

therapeutic benefit, which implies that the allocation of drug treatment is effi cient. Total health

benefits are therefore given by

H∗ = 2

∫ 1

0

(∫ xi

0
(v − τs) ds

)
dxi = v − τ

3
, (B7)

which gives the health plan a total surplus of

S∗ = H∗ − p∗ = v − τ

3
− τ

2β
. (B8)

B.2. Competitive tendering

Suppose that drug i is the preferred drug. The therapeutic gain of prescribing this drug instead

of drug j is given by

∆u (xi, xj) = v − τxi − (v − τxj) = τ (xj − xi) . (B9)

With a treatment loss threshold of T , the preferred drug will be prescribed to all patients for

whom

τ (xj − xi) ≥ −T, (B10)

or, equivalently,

xi ≤ xj +
T

τ
. (B11)

Demand for each drug is therefore given by

qi =

∫ 1−T
τ

0

(
xj +

T

τ

)
dxj +

T

τ
= 1− 1

2

(
1− T

τ

)2
(B12)

and

qj =

∫ 1−T
τ

0

(
1−

(
xj +

T

τ

))
dxj =

1

2

(
1− T

τ

)2
. (B13)

It is easily confirmed that qi > qj > 0 for T ∈ (0, τ), qi = qj = 1/2 for T = 0, and qi = 1 and

qj = 0 for T = 0.
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As in the main model, an equilibrium in pure strategies does not exist in the symmetric

case. Consider instead a mixed strategy F (p) defined on
[
pmin, v

]
. If one of the firms plays this

strategy, the expected profits of the competing firm are given by

πe (p) =
p

2

(
1− T

τ

)2
F (p) + p

(
1− 1

2

(
1− T

τ

)2)
(1− F (p)) . (B14)

F (p) is an equilibrium strategy if πe (p) is constant for all p ∈
[
pmin, v

]
. Solving (B14) for F (p)

yields

F (p) =
p
(
2Tτ + τ2 − T 2

)
− 2τ2πe

2Tp (2τ − T )
. (B15)

The equilibrium value of πe is found by setting pmax = v and using F (v) = 1, yielding

πe =
1

2

(
1− T

τ

)2
v. (B16)

By inserting the value of πe from (B16) into (B15), we derive the equilibrium mixed strategy

given by

F (p) = 1− (T − τ)2 (v − p)
2T (2τ − T ) p

(B17)

The lower bound pmin is then found by setting p = pmin in (B17) and solving F
(
pmin

)
= 0 for

pmin, yielding

pmin =

(
(τ − T )2

2Tτ + τ2 − T 2

)
v > 0 for T < τ. (B18)

Exactly as in the main model, it is easily confirmed that this mixed strategy Nash equilibrium

exists for T ∈ (0, τ), and that the equilibrium prices converge to p1 = p2 = v if T → 0, and to

p1 = p2 = 0 if T → τ .

In order to derive the expected drug prices in the mixed-strategy Nash equilibrium, let the

lowest bid be denoted by pL = min (p1, p2). The probability that the lowest bid is below some

threshold value p is equal to the probability that at least one of the bids is below p, and is thus

given by

Pr (pL ≤ p) = 1− [Pr (p1 > p) ∗ Pr (p2 > p)] (B19)

The cumulative distribution function of pL, denoted by FL, is therefore given by

FL = 1− (1− F (p))2 , (B20)
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with the associated probability density function, denoted fL, is given by

fL =
∂FL
∂p

= 2 (1− F (p)) f (p) . (B21)

The expected value of the lowest price, denoted by peL, is then given by

peL =

∫ p1

p0

pfLdp =
(τ − T )2

(
2T (2τ − T ) +

(
ln
(

(τ−T )2
2Tτ+τ2−T 2

))
(τ − T )2

)
v

2T 2 (2τ − T )2
. (B22)

Similarly, let the highest bid be denoted by pH = max (p1, p2). The probability that the

highest bid is below some threshold value p is equal to the probability that both bids are below

p, and is thus given by

Pr (pH ≤ p) = Pr (p1 < p) ∗ Pr (p2 < p) . (B23)

The cumulative distribution function of pH , denoted by FH , is therefore given by

FH = (F (p))2 , (B24)

with an associated probability density function, denoted fH , given by

fH =
∂FH
∂p

= 2F (p) f (p) . (B25)

The expected value of the highest bid, denoted by peH , is then given by

peH =

∫ p

p
pfHdp =

− (τ − T )2
((

ln (τ−T )2
2Tτ+τ2−T 2

) (
2Tτ + τ2 − T 2

)
+ 2T (2τ − T )

)
v

2T 2 (2τ − T )2
(B26)

We can then calculate the expected average price, and thus the expected total drug expenditures,

as

pe =

(
1− (τ − T )2

2τ2

)
peL +

(
(τ − T )2

2τ2

)
peH =

(
1− T

τ

)2
v. (B27)

A comparison with the expected average price in the main model, given by (13), shows that the

price in (B27) is lower, but otherwise depends on the parameters (T , τ , and v) in a qualitatively

identical way. Thus, the alternative demand system based on uncorrelated treatment effects
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yields lower equilibrium prices both under decentralised competition and under competitive

tendering.

Under competitive tendering, the aggregate health gains of patients being prescribed the

preferred drug are given by

Hi =

∫ 1−T
τ

0

(∫ xj+
T
τ

0
(v − τxi) dxi

)
dxj +

T

τ

∫ 1

0
(v − τxi) dxi

=
3
(
2Tτ + τ2 − T 2

)
v − τ3 −

(
3τ2 − T 2

)
T

6τ2
, (B28)

while the aggregate health gains of patients being prescribed the non-preferred drug are given

by

Hj =

∫ 1

T
τ

(∫ xi−Tτ

0
(v − τxj) dxj

)
dxi =

(T + 3v − τ) (τ − T )2

6τ2
(B29)

Total health gains are therefore

H = Hi +Hj = v − τ

3
− (3τ − 2T )T 2

6τ2
, (B30)

while the total expected surplus of the health plan is given by

Se = H − pe =
2
(
3 (2τ − T ) v − 3τ2 + T 2

)
T + τ3

6τ2
. (B31)

It is easily confirmed that ∂Se/∂T > 0 for all v > τ and T < τ , as in the main model.

B.3. Competitive tenders vs. decentralised competition

A comparison of (B7) and (B30) reveals that aggregate health gains are lower under competitive

tendering than under decentralised competition as long as T > 0. Furthermore, a comparison of

(B6) and (B27) shows that competitive tenders yield lower (higher) expected drug expenditures

than decentralised competition if

T > (<)

(
1−

√
τ

2βv

)
τ ∈ (0, τ) . (B32)
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Thus, the comparison of the two policy schemes is qualitatively identical under the two different

demand systems. In order to illustrate this qualitative similarity, and also to measure the

quantitative differences, we compare the equilibria in Figure B1 using the exact same parameter

configuration as in Figure 1 in the main analysis, with v = 5, τ = 2 and β = 3/4.

[ Figure B1 here ]

Using the previously derived equilibrium expressions in this Appendix, it is easily verified

that p∗ > (<) pe if T > (<) 0.85, which is equivalent to a market share of the preferred drug

of more (less) than 83%. Furthermore, S∗ > (<)Se if T > (<) 0.91, which is equivalent to a

market share of the preferred drug of more (less) than 85%.

Appendix C: Supplementary calculations

This appendix contains supplementary calculations for the two extensions analysed in Section

6.

C.1. Asymmetric treatment effects

C.1.1. Decentralised competition

Under decentralised competition, drug demand is given by

q1 =
1

2
+

∆v − β (p1 − p2)
2τ

(C1)

and

q2 =
1

2
−
(

∆v − β (p1 − p2)
2τ

)
, (C2)

The Nash equilibrium prices are

p1 =
τ

β
+

∆v

3β
and p2 =

τ

β
− ∆v

3β
, (C3)

which yield demand

q1 =
1

2
+

∆v

6τ
and q2 =

1

2
− ∆v

6τ
. (C4)

Thus, the higher-quality drug has both higher price and higher demand. It is easily verified

that pi < vi for i = 1, 2 if the condition in (31) holds. Given that the total patient mass is equal
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to one, the average price in (32) is then straightforwardly calculated as p∗ = p1q1 + p2q2.

C.1.2. Competitive tendering

Notice first that the equilibrium strategies reported in the second part of Proposition 4 have

the following associated probability density functions:

f1 (p) =
∂F1 (p)

∂p
=

(τ + T −∆v) pmin

2Tp2
, (C5)

f2 (p) =
∂F2 (p)

∂p
=

(τ + T + ∆v) pmin

2Tp2
. (C6)

In order to find the expected value of the lowest price, define pL := min (p1, p2). The probability

that pL is below some threshold level p is given by the following cumulative distribution function:

FL (p) = 1− (1− F1 (p)) (1− F2 (p)) . (C7)

The associated probability density function is

fL (p) =
∂FL (p)

∂p
= f1 (p) (1− F2 (p)) + (1− F1 (p)) f2 (p) . (C8)

Taking into account that F1 has a mass point at p = v1 and that F2 has a mass point at

p = v2 < v1, the expected value of pL is given by

peL =

∫ v2

pmin
pfL (p) dp+ (1− F2 (v2)) (1− F1 (v2)) v2. (C9)

Using the previously derived expressions for F1, F2 and fL, this expected price can be written

as

peL =
(∆v)2

(
(2 (v1 + v2)− T )T + τ2 − (∆v)2

) (
pmin

)2
4v1v22T

2
(C10)

−

((
ln v2

pmin

)(
τ2 − T 2 − (∆v)2

)
v2 + ((τ + ∆v) ∆v − (v1 + v2)T ) (τ + T −∆v)

)
pmin

2v2T 2

Define the highest price as pH := max (p1, p2). The probability that pH is below some
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threshold level p is given by the following cumulative distribution function:

FH (p) = F1 (p)F2 (p) . (C11)

The associated probability density function is

fH (p) =
∂FH (p)

∂p
= f1 (p)F2 (p) + F1 (p) f2 (p) . (C12)

Taking into account that F1 (p) has a mass point at p = v1, the expected value of pH is given

by

peH =

∫ v2

pmin
pfH (p) dp+ (1− F1 (v2)) v1. (C13)

Using the previously derived expressions for F1 and fH , this expected price can be written as

peH =
(τ + T −∆v)

((
ln v2

pmin

)
(τ + T + ∆v) v2 − ((v1 + v2)T − (τ + ∆v) ∆v)

)
pmin

2T 2v2

+

(
(2 (v1 + v2)− T )T + τ2 − (∆v)2

)
(∆v) pmin

2T (τ − T + ∆v) v2
. (C14)

Given the equilibrium strategies F1 (p) and F2 (p), and taking into account that F2 (p) has

a mass point at p = v2, the probability that drug 1 wins the tender is given by

ρ := Pr (p1 < p2) =

∫ v2

pmin
f2 (p)F1 (p) dp+ (1− F2 (v2))F1 (v2) . (C15)

Using the previously derived expressions for F1, F2 and f2, this probability can be written as

ρ =
(τ + T −∆v) ((τ + ∆v) ∆v − (τ + v1 − 3v2)T ) ((v1 + v2)T − (τ + ∆v) ∆v)

8 (τ + T + ∆v)T 2v22
. (C16)

The expected average drug price is then given by

pe = ρ

(
peL

(
1

2
+

∆v + T

2τ

)
+ peH

(
1

2
−
(

∆v + T

2τ

)))
+ (1− ρ)

(
peL

(
1

2
−
(

∆v − T
2τ

))
+ peH

(
1

2
+

(
∆v − T

2τ

)))
. (C17)
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C.2. Captive patients

C.2.1. Decentralised competition

Under decentralised competition, drug demand is given by

q1 = λ+ (1− λ)

(
1

2
+
β (p2 − p1)

2τ

)
(C18)

and

q2 = (1− λ)

(
1

2
− β (p2 − p1)

2τ

)
. (C19)

The equilibrium drug prices are

p1 =
3 + λ

3 (1− λ)

τ

β
(C20)

and

p2 =
3− λ

3 (1− λ)

τ

β
, (C21)

which yields equilibrium demand

q1 =
1

2
+
λ

6
and q2 =

1

2
− λ

6
. (C22)

It is easily verified that max (p1, p2) < v if the condition in (39) holds. The average price in

(40) is then straightforwardly calculated as p∗ = p1q1 + p2q2.

C.2.2. Competitive tendering

Notice first that the equilibrium strategies given by Proposition 5 have the following associated

probability density functions:

f1 (p) =
∂F1 (p)

∂p
=

(T + τ) pmin

2Tp2
, (C23)

f2 (p) =
∂F2 (p)

∂p
=

((1 + λ) τ − (1− λ)T ) v

2T (1− λ) p2
. (C24)

In order to find the expected value of the lowest price, define pL := min (p1, p2). The prob-

ability that pL is below some threshold level p is given by the following cumulative distribution

function:

FL (p) = 1− (1− F1 (p)) (1− F2 (p)) . (C25)
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The associated probability density function is

fL (p) =
∂FL (p)

∂p
= f1 (p) (1− F2 (p)) + (1− F1 (p)) f2 (p) . (C26)

The expected value of pL is given by

peL =

∫ v

pmin
pfL (p) dp =

1 +
τ

T
+

(
(1 + λ) τ2 − (1− λ)T 2

) (
ln pmin

v

)
2 (1− λ)T 2

 pmin. (C27)

Next, define the highest price as pH := max (p1, p2). The probability that pH is below some

threshold level p is given by the following cumulative distribution function:

FH (p) = F1 (p)F2 (p) . (C28)

The associated probability density function is

fH (p) =
∂FH (p)

∂p
= f1 (p)F2 (p) + F1 (p) f2 (p) . (C29)

Taking into account that F1 (p) has a mass point at p = v, the expected value of pH is given by

peH =

∫ v

pmin
pfH (p) dp+ (1− F1 (v)) v, (C30)

which can be expressed as

peH =
2λτv

(1 + λ) τ + (1− λ)T
− (T + τ)

(
1

T
+

(1 + λ) τ + (1− λ)T

2 (1− λ)T 2

(
ln
pmin

v

))
pmin. (C31)

For any λ > 0, demand for the preferred drug is higher if p1 < p2 than if p2 < p1. This implies

that, all else equal, the expected treatment costs (which are equal to the expected average price)

depends on the identity of the winning bid. Thus, we need to calculate the probabilities that

the tender is won by each of the two drugs.

Given the equilibrium strategies F1 (p) and F2 (p), the probability that drug 1 wins the

tender is given by

ρ := Pr (p1 < p2) =

∫ v

pmin
f2 (p)F1 (p) dp =

(1− λ) (τ + T )

2 ((1 + λ) τ + (1− λ)T )
<

1

2
. (C32)
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The expected average drug price is then given by

pe = ρ

(
peL

(
λ+ (1− λ)

(
1

2
+
T

2τ

))
+ peH (1− λ)

(
1

2
− T

2τ

))
+ (1− ρ)

(
peL (1− λ)

(
1

2
+
T

2τ

)
+ peH

(
λ+ (1− λ)

(
1

2
− T

2τ

)))
. (C33)

Using the previously derived expressions for ρ1, p
e
L and p

e
H , we derive the expression for p

e given

by (41).

49


